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Technical Abstract

The Arctic is rapidly melting due to global warming and may experience its first ice free
summer in the next 30-40 years. This is regardless of potential emissions reductions unless
local preventative action is taken. The loss of Arctic sea ice could lead methane to be released
from permafrost, a changing climate in the northern hemisphere as well as a positive feedback
loop whereby reduced albedo causes more heat to be absorbed. Preventing the Arctic from
melting and perhaps restoring lost ice may help to mitigate the effects of our carbon emissions
by increasing the global albedo and thereby reducing global temperature rises. A proposed
solution to Arctic melting is to pump seawater on top of existing thin ice in the winter to
thicken it and preventing it from melting fully during the warm winter months, also know
as ice volcanoes. As the albedo of ice is much greater than that of seawater, more solar
radiation is reflected and hence the Arctic is kept cooler helping to prevent more melting.
Ice volcanoes and the interaction between water flows and ice have not been researched in
depth. The two key pieces of relevant research are an investigation into the feasibility of ice
volcanoes with an energy balance over the whole Arctic winter by Desch et al., 2017, and
modelling/theory by Cartlidge, 2022 on the response of ice to water flowing down a channel
over its surface.

The project follows on primarily from the work of Cartlidge, 2022 repeating the ex-
periments and developing a new model for the channel flow before developing models and
conducting experiments for a radial flow. The model and experiments of Cartlidge, 2022
considered a one-dimensional channel rather than a radial flow. However, useful insights
were obtained as to how an ice volcano may behave. Firstly, the moment the water first
comes into contact with the ice is considered; the temperature at the interface cannot be
greater than the phase change temperature, otherwise ice must have melted instantaneously.
Similarly it cannot be lower then the phase change temperature as this would imply instan-
taneous freezing. The interface in both the water and the ice must therefore be the phase
change temperature. At the instant the water first touches the ice there is an infinite tem-
perature gradient in the ice at the interface as there has been no time for heat conduction
through the ice. Heat convection to the ice is proportional to the temperature difference
between the water and the interface and is therefore finite, the difference between the heat
fluxes determines the rate of melting/freezing. Therefore, for any (finite) water temperature,
the initial response is freezing at an infinite rate. The temperature profile in the ice then
weakens as heat is conducted into it and it warms up, meanwhile the heat transfer from
the water is constant (as it is flowing over the surface). Hence, after a period of time the
newly formed and then the original ice begin to melt. Melting occurs first where the water is
injected due to the water being warmest there and then progresses as the temperature profile
in the ice continues to weaken. Implications for the ice volcano are clear; if water greater
than phase change temperature is pumped continually then the ice volcano shall melt a hole
around itself, quickly rendering it useless. It may be possible to avoid this by using water
at or very close to phase change temperature (though this presents challenges of its own)
or by pumping the onto an artificial solid surface so the water is cooled to phase change
temperature by convection to the air. It is also worth noting that convection to the air and
radiation are neglected as they are relatively small at the short time scales considered (of
the order of minutes); these would beneficially increase heat transfer away from the water.
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Two models had been developed previously to predict the change in ice thickness along
the channel and a third was developed during the project which provides the most accurate
results when compared to experimental data. The first of the theories developed initially
assumes that there is no thermal boundary layer in the water and hence a single, bulk
temperature decreasing along the length of the channel. The second model assumes instead
that there is a thermal boundary layer growing with the square root of the distance along
the channel. The new model instead assumes the thermal boundary layer is growing with
the cube root of distance, and is the most accurate.

The experiments were carried out in a walk-in freezer at -18°C. An initial layer of ice
was frozen in the channel and the depth measured. Water of various temperatures was then
pumped on top and allowed to flow down the surface for a period of time before the depth
was measured for a second time. These experiments used thermocouples connected to a
Raspberry Pi to measure the water temperature flowing down the channel. Previously, this
temperature had been assumed to be that of the fridge where the water was stored. However,
the results were not reliable when the experiment was repeated without measurement of
the water temperature. With measured 0.5 and 0.8°C water supplied to the ice the data
was accurately predicted by the new boundary layer theory (δ ∝ 3

√
distance). For these

temperatures, almost all of the data was bounded by the lower predicted growth of the
previous boundary layer model (δ ∝

√
distance) and the higher predicted growth of the no

boundary layer model. For 2.0°C water the models were less accurate; potential causes of
this are inaccurate temperature measurement or a breakdown of the semi-infinite ice depth
assumption. The latter is more likely as there was significant melting through most of the
ice, especially at the channel inlet where the models deviated the furthest. Water overflowing
from the melted region rather than flowing over the ice in a thin film as assumed would also
lead to a breakdown of the assumptions in the model.

The experiments undertaken for radial flow matched closely to the two models developed
to predict the resulting ice profile. In the first experiment, it is thought that leaving the
chest freezer lid open during the experiment led to the water cooling less than expected
and hence the water was supplied at a warmer temperature than intended. This shows the
difficulty in accurately knowing the temperature when it could not be measured directly.
These models are equivalent to the first two models for the channel flow; they consider the
flow to be inviscid with either no thermal boundary layer or one growing as the square root
of distance. The boundary layer model most accurately predicted the ice growth for the
radial flow with both the melting and freezing estimated well apart from very close to the
inlet. At the centre of the ice disk the models break down as the water is not injected as a
point source, but from a pipe with finite area.

The experiments for both the channel and radial flows show that it is possible to predict
the ice profile resulting from water flowing over its surface, though the complex interaction
of melting and freezing is challenging to predict. The results and models show that ice
volcanoes using greater than phase change temperature water shall not be successful unless
action is taken to prevent melting where the water is injected. The report concludes with
areas of further research that are required to understand whether ice volcanoes could be used
to refreeze the Arctic and the implications of doing so.
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1 Introduction

1.1 Arctic Sea Ice Melting

The extent covered of the Arctic covered by ice has reduced by over 40% since 1979 whilst
the volume of ice has reduced by over 70% in the same amount of time (Dunne, 2022). Arctic
melting is the result of global warming and it is likely that there shall be an ice-free Arctic
summer by 2060 (Dunne, 2022) even if our greenhouse gas emissions significantly reduce.
The IPCC, 2018, “has high confidence” of overshooting 1.5°C even if current Nationally
Determined Contributions are supplemented with “very challenging increases in the scale
and ambition of mitigation after 2030”. Therefore, it would appear that overshoot is the
most optimistic scenario. Overshoot results in an around 80% chance of a summer being
ice-free before 2060 and if temperatures are to reach 2°C then this rises to 90% (Dunne,
2022).

Figure 1: PIOMAS Arctic Ice Volume
(Schweiger et al., 2011)

Figure 2: Ice-Free Summer Probability
(Dunne, 2022)

Sea ice melting is increased by Arctic amplification; increased temperatures cause ice to
melt. This exposes seawater which has an albedo less than a tenth of that of ice (and a
fifteenth of that of snow-covered ice, Desch et al., 2017). Hence the area absorbs more solar
radiation and heats up. The warmer waters then melt more ice thereby exposing more sea in
a positive feedback loop; this is the main driver of Arctic amplification which is causing the
region to heat up four times faster than the global average (Rantanen et al., 2022). However,
the feedback loop can also work in reverse; if the amount of ice is increased then less solar
radiation shall be absorbed and temperatures shall decrease. Desch et al., 2017 calculated
that losing all the ice historically present (around 6 million km2) would result in an increase
of energy absorbed by the Arctic equal of almost 3×1011 J. Averaged across the globe during
a year this is 0.17 Wm−2, which is equivalent to over 14% of anthropogenic radiative forc-
ing. The Arctic melting would therefore cause global temperatures to measurably increase.
Alongside increasing global temperatures by a reduction in global albedo, loss of Arctic sea
ice leads to increased coastal erosion in Arctic regions, intensification of extreme weather
events (from snow storms to droughts) and the release of unknown quantities of methane
and CO2 currently trapped in permafrost (Moon et al., 2019).
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Figure 3: Arctic Albedo
(National Snow and Ice Data Center, n.d.)

Figure 4: Arctic Amplification
(Goddard Institute for Space Studies, 2016)

Not only has the extent of Arctic ice significantly reduced but the average thickness
has halved since records began in 1979 (Desch et al., 2017). Ice that has survived multiple
summers, known as multi-year ice, is thicker and stronger than first-year ice so the reduction
in the thickness of ice is a concern. Not only is multi-year ice thicker but it also slowly rejects
salt in the form of brine; this makes the ice more resistant to melting and to being broken
up by waves. Figure 5 shows how the age/thickness of Arctic ice has reduced over the last
forty years. The thinning of the ice makes it susceptible to melting more quickly so we must
urgently take action to prevent it.

Figure 5: Arctic Ice Thinning (Lindsey and Scott, 2020)
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1.2 Ice Thickening through Ice Volcanoes

There are several proposed methods of increasing Arctic ice; these range from scattering
reflective beads across the surface of the ice to increase its albedo to marine cloud brightening
to reduce the amount of solar radiation. Ice volcanoes are a proposed method of directly
increasing the amount of ice that freezes during the winter by pumping water on top of
existing ice. Water freezing on the bottom of the ice requires the latent heat to be conducted
through the ice and then convected to the air or radiated into space. For new ice that is not
forming on exposed water, existing ice is an insulating layer between the water underneath
and the cooling that is provided from above. Therefore, if water is pumped on top of the
ice it may freeze more quickly thereby thickening the ice and allowing it to survive longer
during the summer months. Ice that is thicker than 1.5m is likely to survive the summer
in many areas thereby increasing the albedo and reducing the amount of energy absorbed
(Desch et al., 2017).

The proposed ice volcanoes would pump water up and on top of thin ice in the winter,
and as it then flows outwards the water would freeze and thicken the ice. Over the whole
Arctic winter the ice would be thickened such that it should survive the summer melting.
The following year the ice would thicken again and hence become multi-year ice. The exact
thickness of ice required will vary across the Arctic region due to meteorological conditions
and increased solar radiation at lower latitudes. Desch et al., 2017 calculated that thickening
ice by around 1m would have a significant impact. Their calculations suggested that it would
be possible for convection and radiation of heat to provide the necessary cooling to freeze
ice to the necessary thickness. However, due to the heat release from water freezing on top
of the ice, natural freezing on the bottom of the ice is reduced. The effect is that only 70%
of the expected increase in ice is observed, therefore around two fifths of the water that is
pumped does not contribute to a net increase in ice. The calculations performed by Desch
et al., 2017 only consider a heat balance across the whole of the Arctic summer and they do
not calculate the impact of the heat release on the existing ice.

Figure 6: Potential Arctic Ice Growth
(Original Diagram Based on the Calculations of Desch et al., 2017)
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Despite the calculations of Desch et al., 2017, there has been very little experimental
work or modelling of ice volcanoes themselves. Cartlidge, 2022 performed experiments for
water flowing over an ice surface down a channel in a simplified two-dimensional model of
an ice volcano. The work showed that an ice profile along the channel could be measured for
water injected above its freezing temperature, although these experiments were not repeated.
Experiments were also conducted using freezing temperature water; in these experiments the
models developed underestimated the measured growth by around 50%. These experiments
were conducted in a channel metre long and over time periods of the order of 10 minutes.
When these experiments were repeated the results were not reliable. This was thought to
be as the result of variations in the water temperature flowing over the ice. This project
implements rigorous experiments to obtain data for the case of a channel flow as well as
developing a new, more accurate model of the resulting ice profile. The experiments and
modelling are then extended to a radial three-dimensional case which is more representative
of an ice volcano. The results of the project are presented along with implications for the
design and deployment of ice volcanoes and some of the challenges which may arise.

Figure 7: Ice Volcano Concept
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2 Modelling

2.1 Previous Modelling

The modelling work done by Cartlidge, 2022 used Phase changes following the initiation of
a hot turbulent flow over a cold solid surface (Huppert, 1989) as a basis and is derived again
here for completeness and as a starting point for further derivations. The assumptions and
methods are also used in the derivation of the updated model for the channel case and in the
models for the radial case. The ice is taken to be of semi-infinite thickness and cooling due
to convection, radiation or evaporation from the water to the atmosphere is neglected. The
validity of these assumptions for the time and length scales used are analysed later in this
section. Any heat transfer to the walls of the channel is also neglected; experimental results
suggest this assumption may be not be valid and this is discussed in the results section.

2.2 Nomenclature

Thermal diffusivity of ice, αi = 1.18 × 10−6 m2s−1

Thermal diffusivity of water, αw = 0.132 × 10−6 m2s−1

Thermal conductivity of ice, λi = 2.22 Wm−1K−1

Thermal conductivity of water, λw = 0.56 Wm−1K−1

Density of ice, ρi = 916.2 kgm−3
Density of water, ρw = 1000 kgm−3
Specific heat capacity of ice, cp,i = 2100 Jkg−1K−1
Specific heat capacity of water, cp,w = 4200 Jkg−1K−1
Heat transfer coefficient between water and ice, h = 2757 Wm−2K−1

Latent heat of fusions of water, L = 334,000 Jkg−1
Phase change temperature of water, Tpc = 0°C
Distance along the channel, x
Perpendicular distance from the initial slope, z
Time since water injection, t
Position of the water-ice interface, η(x, t)
Temperature of the ice, Ti(x, z, t) for z ≤ η
Temperature of the water, Tw(x, z, t) for z ≥ η
Velocity of the flow in the x-direction (assumed constant), v
Depth of the flow (assumed constant), d
Small angle of the slope to provide steady flow, ϕ
Conductive heat flux through the ice, qice
Convective heat flux from the water to the ice, qwater
Latent heat flux from water freezing, qlatent

Note that where a parameter is dependent on various positions in space and time the
convention of f(x, z, t) shall be followed. For example Ti(0, η,0+) represents the temperature
of the ice at the channel inlet (x = 0), at the interface (z = η), instantaneously after the water
is injected (t = 0+). It should also be noted that figures include plots with various colours
representing different times, positions, models or temperatures; different colour schemes have
been used in each of the four cases.
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3 Modelling - Channel Flow

3.1 Setting Up the Problem

Figure 8: Theoretical Model of Water Flowing Down a Channel Over Semi-Infinite Ice

Shown in Figure 8 is the setup for deriving the development of the ice profile for the case
of water flowing along its surface down a channel. The water enters the channel at x = 0
with temperature Tw0 and then flows down the surface with a gravity driven velocity v and
depth d. The change in the depth of ice, η, may be positive or negative as a result of either
water freezing or ice melting. The mass flow of ice to water or water to ice is assumed to
be much smaller than the flow rate of the water injected and this is therefore assumed to be
constant. The ice is assumed to be semi-infinite such that the temperature signal does not
fully penetrate the ice during the experiment; this assumption is verified later. The model
simplifies the ice volcano greatly by limiting it to a two dimensional slice. The water depth
does not vary along the length of the channel (whereas it decreases in the radial case). The
channel flow provides basic insights into how the complicated ice volcano may progress. The
inclination of the channel, ensures that the water flows down the channel, although this shall
not be present in the radial case. As the angle of inclination, ϕ, is small it shall be ignored
henceforth in both diagrams and analysis. In all the following diagrams the vertical axis
represents the the vertical position (with respect to the initial ice surface). The horizontal
axis represents various parameters including distance along the channel, ice depth and time.

Heat transfer to the atmosphere by convection and radiation are neglected over short
time scales when compared to the convection through and the conduction to the ice (this
is verified at the end of the section). Therefore, there are only two mechanisms for heat
transfer that need to be considered; the first is the convection of heat from the water to the
ice qwater, which will cool the water and warm/melt the ice. The second is the conduction
of heat through the ice, qice, which will transfer heat from the surface deeper into the ice.
The freezing of water will release latent heat and similarly the melting of ice will absorb
latent heat. The difference between the heat conducted away from the interface and the
heat convected to it will determine whether there is freezing or melting.
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Figure 9: Heat Transfers in the System

The heat flux through the ice shall be proportional to the temperature gradient in the
ice. The flux at the interface, qice, will therefore be proportional to the local temperature
gradient at the interface. The interface is defined as at z = η where η is the change in ice
depth, therefore:

qice(x, t) ∝
∂Ti

∂z
∣
z=η
= λi

∂Ti

∂z
∣
z=η

Where λi is the thermal conductivity of ice and Ti is the temperature of the ice which
may vary in both space and time (x, t).

The heat flux from the water to the ice interface shall be proportional to the tempera-
ture difference between the water and the interface which may be characterised by various
assumptions discussed in the next section:

qwater(x, t) ∝ (Tw − Tinterface) = h(Tw − Tpc)

Where h is a heat transfer coefficient between the water and ice, Tw is the temperature
of the water, which may vary in space and time and Tinterface is the temperature of the
interface. The temperature of the interface is required to be the freezing/melting temperature
of water/ice as explained below.

3.2 Initial Behaviour at the Interface

Before coming into contact with one another the water is at a constant temperature, Tw0

greater than or equal to the phase change temperature. Similarly, the ice is initially at a
temperature, Tw0 less than or equal to the phase change temperature. At the instant the
water first comes into contact with the ice (t = 0+), there must immediately be a continuous
temperature profile across the interface. The temperature at the interface cannot be below
the phase change temperature otherwise water must have instantly frozen. Similarly, if the
interface temperature exceeded the phase change temperature this would mean that some
ice had immediately melted. Huppert, 1989 identified that the interface temperature must
be equal to the phase change temperature for any position and time:
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Ti(x, η, t) = Tw(x, η, t) = Tpc

The ice is at a temperature Ti0 for z ≤ 0 and t < 0. Instantaneously there has not been time
for freezing/melting (i.e. η = 0) therefore the ice surface must immediately be at the phase
change temperature when the water comes into contact with it at t = 0+: Ti(x,0,0+) = Tpc.
At the instant when the water comes into contact with the ice, there has also been no
time for heat transfer so the ice temperature just below the surface must be the initial ice
temperature: Ti(x,0−,0+) = Ti0. This result is shown in Figure 10.

Figure 10: Water-Ice Interface Condition at t = 0+

The temperature gradient in the ice at the interface just after contact with the water
tends to infinity as there is a step change in the temperature of the ice. As the conductive
heat transfer is proportional to this temperature gradient must also tend to infinity at the
interface:

∂Ti

∂z
∣
z=η
→∞ (t = 0+) ∶ qice = λi

∂Ti

∂z
∣
z=η
→∞ (t = 0+)

The conductive heat flux must be balanced by the convection from the water to the
ice and the latent heat of freezing/melting. The convection is proportional to the finite
temperature difference between the water and interface and therefore the initial infinite heat
conduction through the ice (away from the interface) must be balanced by an infinite rate
of freezing. This condition is true for any (finite) water temperature leading to the perhaps
unexpected result that whenever water comes into contact with ice the immediate response
shall be freezing at an infinite rate. The initial behaviour of the ice-water system was
previously identified by Huppert, 1989. Although the instantaneous response is an infinite
rate of freezing, the heat is then conducted into the ice, weakening the temperature gradient
and therefore reducing the rate of heat transfer.
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3.3 Development of the Ice Profile

Figure 11: Control Volume at Interface for the Channel Case

The heat fluxes and the release/absorption of latent heat can be analysed analytically to
predict how the ice profile develops beyond the initial response. Figure 11 shows a control
volume around a section of ice growth over a period δt, with heat convection from the water
to the control volume and heat transfer from the control volume through the ice. The latent
heat released per unit area of freezing is ρiLδη, therefore by applying the energy conservation:

qwater(x, t)δt + ρiLδη(x, t) − qice(x, t)δt = 0

ρiL
∂η

∂t
= qice − qwater

Where ∂η
∂t , qice and qwater may be functions of both time and space (x, t). This result

was previously derived by Cartlidge, 2022 with slightly different notation. Substituting the
equations for the heat transfer from the water and to the ice gives:

ρiL
∂η

∂t
= λi

∂Ti

∂z
∣
z=η
− h(Tw − Tpc)

The above equations can be used to qualitatively discuss the ice growth; when/where
the heat conduction exceeds the heat convection there will be ice freezing. This is expected
to occur at short time scales when there has been little time for the temperature gradient
to weaken, or far away from the channel inlet where the water will have cooled. When and
where the convective heat flux exceeds the conductive heat flux there will be melting as there
will be net heat flux to the interface (freezing will occur where there is a heat away from
the interface). Melting is therefore expected at long time scales when the ice has reached
relatively warm temperatures and close to the channel inlet where convection is be strongest.
The development of the ice profile will depend upon the temperatures of both the ice and
the water which influence conduction and convection respectively.
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3.4 Phase Change Temperature Water

If the water is initially at its phase change temperature it cannot cool any further and hence
Tw(x, z, t) = Tpc, therefore there shall also be no heat convection from the water to the ice.
Either the water remains at phase change temperature or it freezes in which case it can then
cool further. The rate of freezing is only dependent on the conduction through the ice (as heat
transfer to the surroundings is neglected). As the ice and water temperatures are uniform
along the length of the channel, the system becomes independent of the position along the
channel: Ti(x, z, t) = Ti(z, t) and the ice growth can also be expected to be independent of
channel position: η(x, t) = η(t). As the water can only freeze or remain liquid the problem
becomes known as the ‘one-phase Stefan problem’ since the water phase can be neglected.
For phase change temperature water the equation for ice growth becomes:

ρiL
∂η

∂t
= λi

∂Ti

∂z
∣
z=η

This can be coupled with the heat diffusion equation for the temperature of the ice which
only varies along the vertical (z) axis:

∂Ti

∂t
= αi

∂2Ti

∂z2

These equations were solved by Cartlidge, 2022 who modelled the ice growth as a function
of time. Two models of the ice growth were considered, the first ignores the small change
in the location of the interface between the ice and water as some of the water freezes. The
interface in the model is assumed to remain constant at z = 0 rather than being modelled as
at the true ice height z = η. As the interface moves upwards the heat shall have to conduct
further to reach Ti0 far away from the interface, therefore this model predicts a steeper
temperature gradient from Tpc to Ti0 hence an overestimate of the freezing is expected. The
ice growth in this model is directly proportional to the difference between the initial ice and
phase change temperatures and grows with the square root of time. The equation for the
ice growth ignoring the contribution of the moving interface is as follows:

ηst(t) =
2cp,i(Tpc − Ti0)√

πL

√
αit

The model including the moving interface is more complex and must be solved numerically
as an iterative solution for the parameter γ must be found. The ice growth no longer depends
directly upon the temperature difference, though the growth is still proportional to the square
root of time. The following equations describe the ice growth for the model including the
contribution of the moving interface:

ηmov(t) = 2γ
√
αit, γ = −cp,i(Ti0 − Tpc)√

πL

exp (−γ2)
1 + erf (γ)

Alternatively:

ηmov(t) = γ′ηst(t), γ′ = γ/cp,i(Ti0 − Tpc)√
πL
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Figure 12: Ice Growth with Phase Change Temperature Water

The two models describing the development of the ice profile with phase change tempera-
ture water are shown in Figure 12. These diverge slightly at longer time scales (when the ice
growth is larger). However, the difference is relatively small for the time scales of interest.
The percentage difference is time invariant and for ice of -18°C is less than 7% between the
two models. Figure 13 shows the value of γ′ with increasing temperature difference (i.e.
decreasing initial ice temperature). As expected, at lower initial ice temperatures, there is
a larger discrepancy between the two models, this is due to the larger temperature differ-
ence acting over the same difference in the position of the interface. At the temperatures of
interest it is assumed henceforth that the moving interface can be neglected and that heat
transfer occurs at z = 0. This assumption is challenged later in the analysis of experiments
for warmer than phase change temperature water.

Figure 13: Difference Between Ignoring and Including the Moving Interface
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3.5 Above Phase Change Temperature Water

Water above its freezing temperature may freeze or it may cause ice to melt depending upon
the balance between the conduction of heat away through the ice and the convection of
heat from the water to the ice. When the conduction of heat through the ice exceeds the
convection of heat to it then freezing will occur. Similarly, if the conduction is exceeded by
the convection then there will be melting, this is shown in Figure 14.

Figure 14: Impact of Relative Magnitudes of Conduction and Convection

The water now enters at an initial temperature greater than the phase change temper-
ature, Tw(0, z, t) = Tw0. The interface temperature will still be equal to the phase change
temperature and there shall be an initial infinite rate of freezing. However, as the water
can now cool as well as freeze the behaviour of the system is very different. Firstly, the
temperature profile of the ice must be derived. The heat diffusion equation (∂Ti

∂t = αi∇2Ti)
governs the heat transfer through the ice. With a relatively high flow velocity of the water
compared to the characteristic velocity of the temperature signal (v >>

√
αi/t) the variation

of temperature along the channel can be neglected, hence:

∂Ti

∂t
= αi∇2Ti = αi

∂2Ti

∂z2

The boundary conditions for the ice are that it is all initially at a uniform temperature,
Ti(x, z,0) = Ti0. The ice is semi-infinite hence the temperature far away from the interface
is still at the initial temperature: Ti(x,−∞, t) = Ti0. Finally, ignoring the moving interface,
the temperature at the ice surface is the phase change temperature: Ti(x,0, t) = Tpc. The
solution of the equation for heat diffusion has the general solution:

Ti = A +B erf ( z

2
√
αit
)

As z → ±∞, erf (z) → 0, therefore the semi-infinite ice thickness and the initial state
boundary conditions are equivalent and lead to:

A = Ti0
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The interface condition is Ti = Tpc at z = 0 hence Tpc = Ti0 +B erf (0) = Ti0 +B:

B = Tpc − Ti0

The equation for the temperature of the ice profile is therefore a function of four param-
eters; the initial ice temperature, the phase change temperature, the depth into the ice and
the time since the water was injected:

Ti(z, t) = Tpc + (Tpc − Ti0) erf (
z

2
√
αit
)

The conduction through the ice, qice is given by λi
∂Ti

∂z
∣
z=η, however, ignoring the moving

interface has approximated the heat transfer occurring at z = 0 rather than z = η hence:

qice ≈ λi
∂Ti

∂z
∣
z=0

Differentiating the above equation for the temperature in the ice gives:

∂Ti

∂z
= (Tpc − Ti0) ⋅

2√
π
⋅ 1

2
√
αit
⋅ exp( z

2
√
αit
) = Tpc − Ti0√

παit
exp( z

2
√
αit
)

Evaluating the equation at z = 0 and substituting into the conduction equation:

qice =
λi(Tpc − Ti0)√

παit

As expected, at t = 0 the above equation gives an infinite rate of heat transfer for any (below
phase change) initial ice temperature. The rate of conduction decreases over time as the ice
near to the boundary gets warmer and the temperature gradient weakens. This result was
previously derived by Cartlidge, 2022. The warming of the ice by conduction is shown in
Figure 15 for three depths into the ice (measured from the initial surface).

Figure 15: Temperature Through the Ice Over Time
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3.5.1 Inviscid Channel Flow with No Thermal Boundary Layer

If the water is assumed to be well mixed then there will be no temperature variation through-
out the depth of the water (other than an infinitesimal depth at the interface). The entire
depth of the water will have a bulk temperature that will decrease along the channel as
shown in Figure 16. As the flow velocity is relatively large compared with the characteristic
velocity of conduction in the water (i.e. v >>

√
αw/t) the water velocity is only affected by

the convection and hence is only a function of the position along the channel.

Figure 16: Water Temperature with No Thermal Boundary Layer

The water temperature can be derived by considering the energy balance on the flow
at an arbitrary position down the channel; the heat transferred away from the flow by
convection must cool the bulk water temperature. The heat transfer by convection for the
bulk temperature assumption is h(Tw − Tpc), where h is a heat transfer coefficient.

Figure 17: Control Volume for Deriving the Water Temperature Profile

Applying conservation of energy to the control volume (per unit depth into the page),
the change in enthalpy of the water must be equal to the heat transferred away from it by
convection:

ρwdvcp,w(Tw + δTw) − ρwdvcp,wTw = −qwaterδx
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Substituting in for qwater, rearranging and taking the limit as δx→ 0:

ρwdvcp,w
dTw

dx
= −h(Tw − Tpc)

Tpc is fixed and therefore d(Tw − Tpc) is identical to dTw. Using this and rearranging the
equation above:

d(Tw − Tpc)
Tw − Tpc

= − h

ρwdvcp,w
dx

∫
Tw

Tw0

1

Tw − Tpc

d(Tw − Tpc) = ∫
x

0
− h

ρwdvcp,w
dx

ln( Tw − Tpc

Tw0 − Tpc

) = − h

ρwdvcp,w
x

Tw(x) = Tpc + (Tw0 − Tpc) exp(−
h

ρwdvcp,w
x)

Figure 18: Water Temperatures Down the Channel

The heat transfer by convection is given by h(Tw − Tpc) as noted above therefore for the
case of a flow with a bulk temperature and no velocity boundary layer the convective heat
transfer is:

qwater = h(Tw0 − Tpc) exp(−
h

ρwdvcp,w
x)

This equation can then be substituted into the equation for the rate of ice growth/melting:

ρiL
∂η

∂t
= λi(Tpc − Ti0)√

παit
− h(Tw0 − Tpc) exp(−

h

ρwdvcp,w
x)

Integrating this equation to find the change in ice thickness is then trivial and gives the
following equation:

η(x, t) = 1

ρiL
(2λi(Tpc − Ti0)√

παi

√
t − h(Tw0 − Tpc)e−

h
ρwdvcp,w

x
t)
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The progression of the ice profile is shown in Figure 19; for relatively cool water (0.5°C)
there is freezing along the length of the channel. With warmer temperatures the convection
exceeds the conduction more quickly hence there is melting at the start of the channel and
growth further along. At the inlet the difference in the height of ice is over 5mm for when
the temperature increases by a factor of four to 2.0°C, showing the large sensitivity to inlet
water temperature as discussed later.

Figure 19: Development of the Ice Profile for the Inviscid No Thermal Boundary Layer
Assumption

The normalised difference in heat transfer (qice−qwater)/qice is shown in Figure 20 for three
times and 1.0°C water. The horizontal axis marks where the conduction and convection are
equal, hence where the rate of change in ice thickness is zero. Above the axis there is freezing
with the rate increasing away from the axis, whilst below the axis there is melting. However,
as shown, there may be freezing at a location initially and melting at a later time so the
graph does not show the net change in ice thickness (as is shown in Figure 19). As the water
quickly cools the convection tends to zero, hence the asymptote shown in the figure.

Figure 20: Relative Magnitudes of Conduction and Convection for the NBL Assumption
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3.5.2 Inviscid Channel Flow with a Thermal Boundary Layer

For parallel flow the thermal boundary layer equation is as follows:

u
∂T

∂x
= αw

∂2T

∂z2

There are multiple assumptions that could be made about the velocity profile of the
water, considered first is the case of a constant (in z) bulk velocity, v. Approximating the
temperature changes to be ∆T0 and taking the thermal boundary layer thickness to be δ:

v
∆T0

x
∼ αw

∆T0

δ2

Solving for δ, the thermal boundary layer thickness, shows that it grows with
√
x:

δ ∼
√

αwx

v

The corresponding heat transfer coefficient, h, is given by λw/δ:

h = λw

√
v

αwx
(x > 0)

This heat transfer coefficient describes the heat transfer from the bulk flow above the
thermal boundary layer (at constant temperature Tw0) through the thermal boundary layer
to the interface (at temperature Tpc). As the thermal boundary layer grows the heat must
be transported further and therefore the rate of convection is reduced. The temperature
through the thermal boundary layer has not been solved as the temperature difference of
importance is that across the thermal boundary layer (∆T0 above). The heat transfer by
convection from the water is now given by:

qwater = λw(Tw0 − Tpc)
√

v

αwx

The equation for the convective heat transfer through the
√
x thermal boundary layer

can now be substituted into the equation for the rate of ice thickness change which can again
be integrated to obtain:

ρiL
∂η

∂t
= λi(Tpc − Ti0)√

παit
− λw(Tw0 − Tpc)

√
v

αwx

η(x, t) = 1

ρiL
(2λi(Tpc − Ti0)√

παi

√
t − λw(Tw0 − Tpc)

√
v

αwx
t)
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The ice profile shown in Figure 21 develops very differently compared to the no thermal
boundary layer assumption; the convective ice heat transfer close to the channel inlet is very
large as the thermal boundary layer is very thin close to the inlet. As the convective heat
transfer is proportional to 1/√x it decreases much more slowly than the previous exponential
model, hence there is melting all the way down the channel for 2.0°C water. The net change
in the volume of ice even for 1°C is also negative which implies ice volcanoes would not be
feasible.

Figure 21: Development of the Ice Profile for the δ ∝√x Assumption

The difference in heat transfer between the conduction through the ice and convection
from the water confirms what is shown in Figure 21. Figure 22 shows how the convection
quickly exceeds the conduction all the way down the channel after around ten minutes. The
melting that occurs shall then destroy any ice that had built up and then the original ice
according to this model. As with the ice profiles, the convective heat transfers do not reduce
as quickly to converge at the asymptote on the plot. The graph shows that in the case of water
with a thermal boundary layer growing with

√
x, the relatively large temperature difference

across the thermal boundary layer leads to significant heating and eventually melting.

Figure 22: Relative Magnitudes of Conduction and Convection for the δ ∝√x Assumption
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3.5.3 Viscous Shear Channel Flow with a Thermal Boundary Layer

The thermal boundary layer equation for parallel flow is again given by:

u
∂T

∂x
= αw

∂2T

∂z2

Instead of assuming a bulk flow velocity it will be assumed that a velocity boundary layer
has developed such that the thermal boundary layer occurs in an area where there is shear
flow. The velocity profile will be approximated as u = Sz, where S is the shear rate, hence:

Sz
∂T

∂x
= αw

∂2T

∂z2

Taking the same approximations of the temperature differences and thickness δ as above:

Sδ
∆T0

x
∼ αw

∆T0

δ2

Solving for δ, the thermal boundary layer thickness, now grows with 3
√
x:

δ ∼ 3

√
αwx

S

From lubrication theory found in Lister, 1992, the velocity parallel to a slope in a viscous
fluid can be described by:

u = g

2ν
z(2d − z) sinϕ

When integrated this gives the 2D volumetric flux, V :

V = gd3

3ν
sinϕ

The shear rate is defined as the derivative of velocity with respect to z at the surface:

S ≡ ∂u

∂z
∣
z=0
= g sinϕ

ν
d = (g sinϕ

ν

√
3V )

2/3

The heat transfer across the new thermal boundary layer can now be derived. Taking
the shear velocity profile and once again applying it to the thermal boundary layer equation:

Sz
∂T

∂x
= αw

∂2T

∂z2

Using the similarity solution T −Tw0 = (Tpc−Tw0)f(z) where z = z/δ and δ = δ ∼
√
αwx/S

and denoting differentiation with respect to z as f ′:

−1
3
z2f ′ = f ′′

The equation is then separable for f ′ and can be integrated to give:

f ′ = Ae−z3/9
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where A is an arbitrary constant. The boundary conditions of phase change temperature
at the surface (i.e. f(0) = 1) and initial water temperature far from the surface (i.e. f → 0
as z →∞) can be used to integrate f ′ again to give:

f(z) = ∫
∞
z e−u3/9 du

∫
∞
0 e−u3/9 du

The flux is directly proportional to the temperature gradient at the interface:

∂T

∂z
∣
z=0
= Tf − Tw0

δ
f ′(0)

f ′(0) = −(∫
∞

0
e−u

3/9 du)
−1
≈ −0.538

Therefore the heat convection through the ice in the new model of the thermal boundary
layer growing with

√
x is:

qwater = 0.548λw(Tw0 − Tpc) 3

√
S

αwx
, S = (g sinϕ

ν

√
3V )

2/3

The above equation interestingly has very little dependence on the flow rate of the water
(qwater ∝ V 1/9). The thermal boundary layer also grows much more slowly with distance
along the channel, x, than the previous theory, therefore there shall be a slower change in
the convection rate. As a result, the ice thickness can be expected to be flatter (as qice is
independent of x). The new equation for the development of the thermal boundary layer can
be substituted into the equation for the rate of ice growth which is integrated once more:

ρiL
∂η

∂t
= λi(Tpc − Ti0)√

παit
− λw(Tw0 − Tpc) 3

√
S

αwx

η(x, t) = 1

ρiL

⎛
⎝
2λi(Tpc − Ti0)√

παi

√
t − λw(Tw0 − Tpc) 3

√
S

αwx
t
⎞
⎠

The model using a shear flow approximation developed here is an extension to the pre-
vious two models by Cartlidge, 2022, as their models bounded the data they obtained. The
new model is expected to sit between the two previous models and better capture the shape
of the data, as well as fitting to it more accurately.
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Figure 23 shows the ice thickness change for the new boundary layer model of a thermal
boundary layer in a viscous shear flow. The thermal boundary layer grows more slowly than
in the previous case hence, the rate of heat transfer reduces less rapidly. The figure shows
an ice thickness thicker than for observed in the previous model (with an inviscid thermal
boundary layer) and predict less melting in the channel. Whilst the melting is reduced, there
is still melting along the whole length of the channel for 2.0°C water. The melting with 1.0°C
water only occurs up to around half the length (∼ 0.2 m vs ∼ 0.4 m), which is encouraging
for the ice volcano if the model is accurate.

Figure 23: Development of the Ice Profile for the δ ∝ 3
√
x Assumption

The impact of the thermal boundary layer growing as the cube root of distance rather
than square root as previously is shown in Figure 24. The thermal boundary layer thickens
more slowly and hence the rate of convection through it decreases more slowly (with respect
to distance). Therefore, the convective heat flux is stronger for further down the channel.
The figure shows that after just five minutes there is net heat transfer to the interface (rather
than away from it) along most of the channel. Hence, there will be melting along most of
the channel.

Figure 24: Relative Magnitudes of Conduction and Convection for the δ ∝ 3
√
x Assumption

26



3.5.4 Models for the Development of the Ice Profile - Channel Case

The two models for the ice profile resulting from water flowing over its surface down a channel
developed by Cartlidge, 2022 have been supplemented by a third model developed here. The
two existing models considered firstly water with a bulk temperature decreasing along the
channel due to convection of heat away from the water. The second model considered a
thermal boundary layer in a flow of constant (in z) velocity growing with the square root of
distance. The new model uses a thermal boundary layer growing within a region of shear flow
in a velocity boundary layer; this results in the thermal boundary layer growing as 3

√
x. All

the models show that the heat conduction through the ice initially exceeds the convection to
it and hence the first response is freezing. As the ice warms independently of position whilst
the heat convection is strongest closest to the channel entry (for all the models), this is where
melting first begins (in both space and time). The heat flux by convection is independent
of time, hence as the ice warms in time the position of no net flux moves down the channel
(in increasing x). The initial water temperature greatly affects the ice profile that develops
in all of the models even close to the freezing temperature and with relatively small changes
from 0.5°C to 2.0°C, which has significant implications for the ice volcano.

Figure 25: Comparison of the Three Models with 1°C Water after 8 Minutes

Figure 25 shows the prediction of each of the three models for 1°C water flowing over ice
down a channel after eight minutes. The new model with a thermal boundary layer in a shear
velocity flow predicts a much steeper transition from melting to freezing (at the given time)
and sits between the two previous models. Towards the end of the channel the two thermal
boundary layer models predict very similar growths, due to the different dependencies on
distance along the channel. These models cross at x ≈ 2m though this is outside the range
of interest of this project which focuses on relatively short length scales.
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4 Experiments - Channel Flow

4.1 Experimental Setup - Channel Flow

Cartlidge, 2022 conducted experiments in a walk-in meat freezer in the kitchens of Trinity
College, Cambridge to determine the ice profile resulting from water flowing over its surface
and down a channel. The freezer was used as a cold room, maintained at -18°C, representative
of Arctic temperatures in the winter (Labe, 2016). The same experimental setup (shown in
Figure 26) involved pumping water from a reservoir to the inlet of a slightly angled channel
and then into a collection container. This was used in the following experiments.

Figure 26: Channel Setup Figure 27: Channel Size (Cartlidge, 2022)

The pump used was calibrated to a volumetric flow rate of water of 5.4 cm3s−1 and the
channel (shown in Figure 27), had an aluminium base to act as a heat sink with an acrylic
channel on top. Acrylic was used for two reasons; first its transparency allows the basic ice
profile to be seen through the walls. Secondly, any heat transfer to the walls is neglected in
the models, hence the low thermal conductivity of acrylic helped to minimise heat transfer
from the water/ice and the walls. The walls did however, provide a challenge in achieving a
uniform ice profile across the width of the channel as discussed later.

The channel was designed such that its entire width was uniformly covered by a thin film
of water at the selected flow rate, hence the model could be assumed to be valid over the whole
width and uniform growth was expected. The characteristic distance of the temperature
signal, l ∽

√
αit, is approximately 24mm after eight minutes. The depth of ice frozen was

slightly shallower than this hence the semi-infinite approximation may start to break down
towards the end of the 8 minute experiment. Before the temperature signal reaches the base
of the ice it is unaware that the ice is not semi-infinite and hence the assumption is valid
until this point. Originally the channel was taped closed, however it was very challenging
to prevent water from leaking. Therefore, two stoppers which were 3D-printed by Pantling,
2022, these have slots for o-rings to sit into and are then sealed with a non-hardening sealant
to prevent water escaping. Initially, the ice does not freeze evenly so it is melted using a
warmed strip of aluminium (similar to a Zamboni for ice-rinks, Cartlidge, 2022), before being
allowed to refreeze. The process of melting and refreezing must often be carried out multiple
times to ensure that the surface of the ice is suitably smooth to carry out the experiment.
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The change in ice thickness was measured as the difference between two measurements
from the top of the channel. Before running water over the surface a micrometer was used
to measure the depth from the top of the channel at two locations across its width at 5 cm
intervals. After the experiment the ice was allowed to cool (to prevent the micrometer melting
the ice) and measurements were taken at the same locations and the difference between their
averages taken as the change in the ice profile. Due to natural variations across the width
of the channel this measurement incurred significant uncertainty, hence two measurements
were taken across the channel width.

4.2 Achieving Freezing Temperature Water

Cartlidge, 2022 performed experiments using freezing temperature water flowing down ice
over the channel, however it was noted there was significant difficulty in maintaining the
temperature of the water. By melting ice cubes into water it is possible to cool the water
to 0°C in the reservoir and this is known to be constant if further ice cubes do not melt.
However, as noted above, there is some cooling in the water pipe that leads to a temperature
drop (for above freezing temperature water). In the case of water at or close to freezing
temperature (<1°C) it is observed that the water begins to freeze in the supply pipe as
shown in Figures 28 and 29. Maintaining a constant supply of water with no ice was not
practical with the available equipment and on the rare occasion ice did not block the pipe,
particles of ice were observed in the flow. In the experiments of Cartlidge, 2022, greater
than expected ice buildup was observed for freezing temperature water, possibly as a result
of some freezing occurring before the water reaches the channel. As a result of the difficulty
pumping water at its freezing temperature it was decided that it would be futile to continue
with experiments at freezing temperature. These may be possible with more direct control
of the heat transfer to/from the water however this was not possible in this project.

Figure 28: Freezing in the Pipe Figure 29: Freezing at the Inlet
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4.3 Raspberry Pi Thermocouples for Temperature Measurement

When Pantling, 2022 repeated the experiments of Cartlidge, 2022 it was identified that
the results were not reliable. It was suggested that inaccurate knowledge of the water
temperature could be the cause due to the large differences in ice profile observed with
small changes to the water inlet temperature in the models. In those experiments the
water temperature was assumed to be the temperature of the fridge where the water was
stored (2°C) before being taken out briefly for experiments. However, 1°C temperature
variations may have occurred in the fridge which is constantly opened for placing/removing
food. Therefore, in this project thermocouples were set up connected to a Raspberry Pi
(RPi) to measure the water temperature. Initially, the thermocouples shown in Figure 30
were soldered to a breadboard and connected to the RPi. Code was then written on the
RPi to receive temperatures from all thermocouples every second, this was either to record
temperatures throughout the length of the experiment or to display them for an indefinite
period. The RPi was connected to a smartphone through ssh using the RaspController app,
which allowed the RPi to be controlled remotely without the need for a wired keyboard,
mouse or display. SSH allows two computers to securely communicate over a network and
can be used through the mobile hotspot of a smartphone. The thermocouples acquired at
first, when tested, were too large to measure the temperature of the relatively small film
of water flowing over the surface of the ice, hence they were measuring the temperature
of the surrounding air. Smaller, identical, thermocouples were then acquired with no pre-
waterproofing, these were then waterproofed by potting them into a shrink-fit and wired to
a new breadboard. These thermocouples (shown in Figure 31) respond much more quickly
to temperature changes, however, they are still too large to measure the temperature of
the water flowing over the ice. Therefore, an experiment was performed with water flowing
from the reservoir through the pump and back in whilst the inlet and outlet temperatures
were measured. The temperatures were measured continuously whilst the reservoir water
temperature dropped and the temperature difference across a range of temperatures was
approximately 1.0°C. In the following experiments designed to imitate the ice volcano the
reservoir temperature was measured and this was set to be 1.0°C warmer than the desired
inlet temperature.

Figure 30: Original Thermocouples Figure 31: New, Smaller Thermocouples

30



5 Results and Discussion - Channel Flow

Experiments were performed for water entering the channel at 2.0, 0.8 and 0.5°C. The water
flowed over the ice surface for eight minutes in each experiment before any excess was poured
off and the new profile measured. The change in ice thickness was measured at nineteen 5 cm
intervals down the length of the channel. These measurements are plotted with the three
models evaluated at the water temperature. The error bars on the plots are ±0.5 mm due
to the variation of the ice thickness across the channel width. In all experiments there was
often melting at the channel inlet that was beyond the measuring range of the micrometer
(10 − 15 mm depending on the initial ice depth). The no thermal boundary layer model
predicts freezing/very little melting which is not observed. Meanwhile, infinite melting is
predicted at x = 0 by both thermal boundary layer models for t > 0 as a result of the thermal
boundary layer breaking down there. The ice melting at the inlet was also affected by the
water not immediately forming a thin film when exiting the pipe, hence the validity of these
points is disputable both for the models and measurements.

5.1 Results for 0.5°C Water

Figure 32: Experimental Results for 0.5°C Inlet Water

Figure 32 shows the measured and predicted ice profiles for water entering the channel
at 0.5°C, the two data sets show that the experiment is reliable when the inlet temperature
is measured. Each data point is the average of two measurements taken across the width
of the channel in each experiment. The experimental data fits to the new model (δ ∝ 3

√
x)

better than the previous models as was expected as this model is between the previous two.
Towards the end of the channel the new model slightly overestimates the amount of freezing
that shall occur and the previous boundary layer model (δ ∝√x) is slightly more accurate.
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5.2 Results for 0.8°C Water

The 0.8°C experiment showed more melting close to the channel inlet and less freezing than
the previous experiment as predicted both intuitively and by the models (Figure 33). After
the same time of eight minutes, more melting was observed close to the channel inlet and
there was slightly less freezing further down the channel. The two sets of experimental
results are very similar although there are a few outliers in the results of Experiment 1 (at
x = 0.35 and x = 0.95 in particular). The data matches with the newly developed viscous
thermal boundary layer theory (δ ∝ 3

√
x) all the way along the channel where previously it

overestimated the growth. Once again the no thermal boundary layer approximation fails to
capture the observed ice melting very close to the channel inlet and predicts around twice the
average observed water freezing at the end of the channel. There is a small region around
0.2 m from the inlet where the no thermal boundary layer model provides a reasonable
estimate of the growth, however this is very small. The results for both water temperatures
suggest that there is a thermal boundary layer in the water and that it is not well mixed.
After the water reaches the halfway point of the channel the two thermal boundary layer
models are almost equivalent with the new model slightly more accurate.

Figure 33: Experimental Results for 0.8°C Inlet Water
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5.3 Results for 2.0°C Water

Figure 34: Experimental Results for 2.0°C Inlet Water

The results for water at 2.0°C entering the channel do not fit the models as the two colder
experiments did. The melting close to the channel inlet is vastly over predicted by all the
models, including the no thermal boundary layer model. Meanwhile, melting is predicted
by both of the thermal boundary layer models at the end of the channel where freezing is
observed, the no thermal boundary layer model does not accurately describe the freezing
either. There are a few possible reasons for the inaccuracy of the model with 2.0°C water.
Firstly the severe melting observed (and predicted) before net freezing after eight minutes
causes multiple assumptions to perhaps be invalidated. The models for the heat transfer
assume that there is a thin film of water flowing over the surface of the ice, with the melting
observed (which was all the way through the ice at x = 0 and hence not plotted), the water
sits in the hole which it has created and does not flow. The models also neglect the effects of
the moving interface in heat transfer; for the colder temperatures the melting was relatively
small (order 1 mm) after a short distance, whereas for 2.0°C water the melting is greater
and lasts further down the channel. Hence, this assumption is less valid for more of the
channel and could explain the discrepancy. There is a small possibility that the water was
colder than the 2.0°C expected from the exit of the pipe. The minimum root mean square
error for the average of the 2.0°C data is at 1.2°C where the data fits the δ ∝ 3

√
x model

accurately. It is however unlikely that the temperature measurement would be incorrect in
both experiments and as the two data sets are consistent, a systematic error or breakdown
of the model provides a better explanation of why the models do not accurately predict the
ice growth.
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5.4 Additional Observations - Channel Flow

The ice profile along the length of the channel was often highly irregular across the width
of the channel: the most frequent irregularity was ice growth along one side of the channel
rather than the other along a section before the same was observed on the opposite side.
The formations are reminiscent of sandy banks intruding into river bends and are shown in
Figures 35 and 36.

Figure 35: Side Growth Image 1 Figure 36: Side Growth Image 2

Figure 37 shows a basic diagram of the ice formation with the lower and upper surfaces
having a height difference of the order of 1 mm, similar to the measured water freezing in
successful experiments. The variation across the width of the channel is thought to be due
to the walls, these are made of acrylic so there should be very little heat transfer. However,
they may have provided nucleation points for ice to grow preferentially; the curved shape of
the growths implies this may have been the case.

Figure 37: Side Growth Diagram Figure 38: Ice Ridge

There was one case in which a ridge developed, weaving along the middle of the channel
as shown in Figure 38. There was a distinctive peak in the ice along almost the whole length
where freezing was expected with a difference of between 1 and 2 mm in height across the
channel. This formation cannot be explained by nucleation on the channel walls and it is
not known why it occurred; during many experiments the formation appeared only once.
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6 Modelling - Radial Flow

6.1 Setting Up the New Problem

Figure 39: Theoretical Model of Water Radially Over Semi-Infinite Ice

The development of the ice profile in three dimensions is more complex with the setup
for solving the problem shown in Figure 49. The water now flows radially outwards from
the origin and is assumed to be axisymmetric. At r = 0 the water has temperature Tw0

and velocity v with some depth d. The mass flow rate is constant (as freezing/melting is
negligible), as is the density, therefore dvr is constant where r is the radial position. A
streamline on the surface of the water can now be considered with the gravitational term
neglected: p0 = p+1/2ρwv2. The pressure at all locations is atmospheric (so constant) hence the
surface velocity, v, is also constant. Therefore the depth is inversely proportional to the radial
position (i.e. d ∝ 1/r). Once again the change in ice thickness, η, may be either positive or
negative depending on the balance of conduction and radiation. The ice is still assumed to
be semi-infinite such that the temperature signal does not fully penetrate the ice during the
experiment. The flow is only considered in the region in which a thin film covers the surface
of the ice before any rivulets have formed (which would be of importance in the ice volcano).
These assumptions greatly simplify the true conditions of the ice volcano that would operate
on ice that is not level, has surface deformations and is not semi-infinite, however it provides
a better representation of the true flow than the channel model. Considering the model
for the channel case it is difficult to intuitively predict what may happen with the radial
flow. As the water flows outwards its mass flow rate per unit area will reduce and hence we
expect the convective heat flux to reduce similarly. Meanwhile, the conductive heat flux was
independent of position for the channel. Therefore, it may be found that there is a position
after which only freezing can occur (for a specific temperature). The origin will be provided
with a constant flux of heat from the supply of hot water and so melting is expected at the
centre of the ice. However, it is difficult to instinctively predict how the melting will expand
outwards and where the limit of melting may be, if there is one.
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Figure 40: Heat Transfers in the Radial System

The heat flux by conduction through the ice is identical to the channel case and is
directly proportional to the local temperature gradient at the surface. As before this will be
approximated as at the initial interface z = 0:

qice(r, t) ∝
∂Ti

∂z
∣
z=0
= λi

∂Ti

∂z
∣
z=0

Where the symbols have the same meanings as defined previously though Ti shall now
potentially vary in r rather than in x.

The heat flux to the interface from the water can also be described like previously as
proportional to the temperature difference between the water and the interface:

qwater(r, t) ∝ (Tw − Tinterface) = h(Tw − Tpc)

where Tw is the temperature of the water at any position in space (r or z) and time.

The conditions at the interface shall remain identical to those in the channel case; the
temperature of both the ice and water at the interface must be equal to the phase change
temperature for all time at any radial position:

Ti(r,0, t) = Tw(r,0, t) = Tpc

Also the conditions as to the initial behaviour are identical; at the instant the water
makes contact with the ice there must be an infinite temperature gradient in the ice. Its
surface must be at the phase change temperature and just below the surface it must be at
the initial temperature, i.e. Ti(r,0,0+) = Tpc and Ti(r,0−,0+) = Ti0. Therefore, in the case
of a radial flow the first response of the system must be freezing of the water at an infinite
rate, independent of the initial temperature of the water.

∂Ti

∂z
∣
z=0
→∞ ∶ qice →∞ ∶

∂η

∂t
→∞ (t = 0+)
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Figure 41: Control Volume at the Interface for the Radial Case

Taking a per unit area analysis over a time period δt, a heat balance can be applied
to find the rate of ice growth for the case of the radial flow. As each of the fluxes of heat
(conduction, convection and latent) is identical to the channel case the equation is identical,
though η is now a function of radial position rather than distance down the channel as
previously. The equation for the rate of ice growth ignoring the moving interface is:

ρiL
∂η

∂t
= λi

∂Ti

∂z
∣
z=0
− h(Tw − Tpc)

6.2 Radial Heat Conduction Through the Ice

The temperature profile in the ice can be derived for the radial case using the heat diffusion
equation. The radial velocity of the water shall be considered to be much greater than the
characteristic velocity of the temperature signal in the ice and hence the temperature can
be assumed to be independent of radius:

∂Ti

∂t
= αi∇2Ti = αi

∂2Ti

∂z2

The solution to this equation is given below, as the boundary conditions are also identical
to the channel case the same solution for the ice temperature is obtained:

Ti(z, t) = Tpc + (Tpc − Ti0) erf (
z

2
√
αit
)

This result is interesting, if expected, as it shows that the ice response is unaffected by
the conditions of the water on the surface. The heat conducted through the ice follows from
the ice profile and is therefore independent of the radial position:

qice =
λi(Tpc − Ti0)√

παit
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6.3 Inviscid Radial Flow with No Thermal Boundary Layer

The first assumption made for the heat convection from the water is that it is well mixed
at some bulk temperature which decreases as the flow spreads radially outwards. The tem-
perature is expected to decrease at a much faster rate than in the channel case as the heat
capacity of the water per unit area shall decrease with radius. The heat transfer from the
control volume shown in Figure 42, qwater is h(Tw − Tpc) where Tw is the temperature of the
water at position r and time t.

Figure 42: Control Volume for Deriving the Radial Water Temperature Profile

The control volume in Figure 42 represents an asymmetric annulus at r of width δr.
Applying energy conservation to this control volume:

ṁcp,w(Tw + δTw) − ṁcp,wTw = −qwater ⋅ 2πrδr

ṁcp,wδTw = −h(Tw − Tpc) ⋅ 2πrδr
The phase change temperature is a constant, hence δTpc = 0, δ(Tw − Tpc) ≡ δTw and:

δ(Tw − Tf)
Tw − Tf

= − 2πh

ṁcp,w
rδr

The above equation can be integrated from Tw0 at r = 0 to Tw at r to give an equation
for the cooling of the water as it flows outwards:

∫
Tw

Tw0

1

Tw − Tf

d(Tw − Tf) = −
2πh

ṁcp,w
∫

r

0
r dr

[ln (Tw,r − Tf)]Tw

Tw0
= − 2πh

ṁcp,w
[r2/2]r

0

ln( Tw − Tf

Tw0 − Tf

) = − πh

ṁcp,w
r2

Tw = Tf + (Tw0 − Tf) exp(−
πh

ṁcp,w
r2)

38



Figure 43: Water Temperatures Radially

The water temperature decreases to close to the phase change temperature much more
rapidly for the radial case as expected. The temperature decreases exponentially with the
square of radius, ∆T ∝ ∆T0 exp (r2), in contrast to the purely exponential decrease seen
in the case of the channel flow ∆T ∝ ∆T0 exp (x). The difference in the rate at which
the temperature approaches phase change temperature is stark with the radial temperature
reaching close to zero after just 0.1m, as shown in Figure 43, compared with the almost
metre required for the channel (Figure 18). The rapid temperature reduction implies that
there may be ice growth closer to the origin even after longer periods of time.

The equation for the radial cooling of water flowing over ice can be substituted into the
equation for the rate of ice thickness change giving:

ρiL
∂n

∂t
= λi(Tf − Ti0)√

αiπt
− h(Tw0 − Tf) exp(−

πh

ṁcp,w
r2)

Integrating the equation to find the resulting ice profile is trivial:

η = 1

ρiL
(2λi(Tf − Ti0)√

αiπ

√
t − h(Tw0 − Tf)e−

πh
ṁcp,w

r2
t)

As shown in the equation above, the ice profile resulting from radial flow with no thermal
boundary layer will quickly tend to grow (in space) for any time as the convective term will
quickly become negligible. The general form of the equation is very similar to the channel
case so a similar shape of the profile is expected, though this will be over a smaller distance.
The equation again predicts that there will be melting in the centre after a period of time;
this is highly undesirable for the ice volcano. If melting in the centre of the ice volcano
cannot be avoided then it will quickly become useless. However, it is important to note that
the model predicts melting in the centre and growth further outwards, which may result in
a bowl shape that can be intermittently left full of water to freeze. Methods for mitigating
the melting effect are discussed later.
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The ice profiles after five minutes for three different temperatures are shown in Figure 44.
There is melting in the centre where the water is warmest and convection is strongest then
freezing where the water has cooled. The ice profile is clearly symmetric (with the only r
term being squared in the exponential), however, it is useful to visualise a full slice across
the diameter of a disk. The ice profile differs significantly from that in the channel case
(Figure 19) as the profile appears more co-sinusoidal at the origin leading to a smooth
transition from the origin. The channel model, if reflected in the x-axis would have a
discontinuous slope at the origin. As the water temperature reduces so rapidly, constant ice
growth of ∼ 2.4mm after 5 minutes is achieved at a radius of approximately 0.1m.

Figure 44: Development of the Radial Ice Profile with the No Thermal Boundary Layer
Assumption

The relative magnitudes of conduction and convection are plotted in Figure 45 showing
how the conduction quickly exceeds the convection (the dotted line in the figure). The point
at which the plots cross the axis is the point at which there is a change from instantaneous
growth (above the axis) to instantaneous freezing (below the axis). Once melting begins to
occur there is no mechanism to prevent it, so the ice only shall continue to melt.

Figure 45: Relative Magnitudes of Conduction and Convection for the NBL Assumption
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6.4 Inviscid Radial Flow with a Thermal Boundary Layer

The thermal boundary layer equation for parallel flow radially from a source is:

u
∂T

∂r
= αw

∂2T

∂z2

The first approximation that shall be made is the same as for the first boundary model
layer for the channel; a bulk velocity, v, that is constant above the interface. Taking the
initial temperature difference between the water and the interface to be ∆T0 and the thermal
boundary layer thickness to be δ:

v
∆T0

r
∼ αw

∆T0

δ2

The thermal boundary layer thickness can then be solved for and shown to grow with√
r:

δ ∼
√

αwr

v

Hence the thermal boundary layer grows equally quickly in the radial and channel cases,
which is perhaps intuitive as the thermal boundary layer grows in the region close to the
surface (and therefore is unaffected by the water depth). As the water spreads more enthalpy
is drawn in from above the thermal boundary layer but this is balanced by the increase in
convective cooling and as a result the thermal boundary layer depth grows as before.

Using the above equation in the model for ice growth gives the following result:

η(r, t) = 1

ρiL
(2λi(Tpc − Ti0)√

παi

√
t − λw(Tw0 − Tpc)

√
v

αwr
t)

Hence the ice profile is equivalent to the channel case for the thermal boundary layer
growing in a flow with a constant, bulk, velocity. The ice profile is shown in Figure 46, the
model melting at the centre of the ice but the convection quickly reduces such that there is
net freezing after five minutes with both 0.5 and 1.0°C water.

Figure 46: Development of the Radial Ice Profile for the δ ∝√r Assumption
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6.5 Water with a Thermal Boundary Layer Growing in Shear Flow

For the case of water flowing down a channel the heat transfer over a thermal boundary
layer in a shear velocity flow was calculated. The velocity profile was taken to be increasing
linearly with distance from the surface (u = Sz) up to the surface at a constant depth, d.
In the radial case the flow spreads out with only mass flow rate constant, hence as the flow
spreads out udr is constant. For the above models the flow is assumed to be inviscid, hence
u is also constant and d ∝ 1/r. However, in a shear velocity flow, u is not constant with
respect to r and hence the thermal boundary layer thickness is non-trivial to derive. Deriving
the thermal boundary layer for a shear velocity flow spreading radially from a source would
provide a third model to be used for predicting the ice profile but was not possible in this
project due to time constraints.

6.6 Models for the Development of the Ice Profile - Radial Case

Figure 47: Comparison of the Models with 1°C Water after 5 Minutes

The models predicting the development of the ice profile for the radial flow are shown
in Figure 47. There is once again severe melting predicted by the thermal boundary layer
model and a small amount of melting predicted by the no thermal boundary layer model.
The ice thickness after 0.1 m is expected to reach 1 − 3 mm after water has flowed over the
surface for five minutes with 1°C water. For the channel flow the data was between the no
thermal boundary layer and δ ∝√x models; if this is again the case then melting is expected
up to ∼ 0.25 m after which there may be freezing. The melting is predicted by the thermal
boundary layer model to be most severe in a ∼ 10 mm diameter region around the origin
with a smooth transition to freezing as observed in the channel case.
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7 Experimental Setup - Radial Flow

The challenges presented by working in the walk-in meat freezer of the Trinity College
kitchens led to the procurement of a chest freezer to be used for the radial experiments. The
new freezer could be accessed at any time of the day and presented a significantly reduced
risk of frostbite or hypothermia as only the experiment rig was inside the cold environment.
The more rapid reduction in water temperature due to radial spreading allowed for a smaller
experimental rig to be designed for the radial flow. The rig shown in Figure 48 was developed
to hold a disc of ice and measure the profile with the attached digital micrometer. The same
pump as used before (with the same flow rate) was used to pump water through the pipe
shown onto the centre of the ice surface. The ice disk was frozen in a flexible silicone cake
tin on top of a thin solid aluminium disk so that it could be easily removed. The method did
not provide a smooth surface of ice with the thickness varying by over 5 mm, so repeated
melting and refreezing was required. Also, a challenge in obtaining a suitable ice disk was
air pockets forming near the surface. This may due to the ice freezing on the surface first
then air being trapped underneath and forming the air pockets. It is recommended that an
ice disk is frozen vertically, constrained on the two flat surfaces for any future experiments.

Figure 48: Radial Flow Rig Figure 49: Radial Flow Setup

As a result of the smaller size of the setup, an experiment time of 5 minutes was selected
for the radial experiments with the intention of measuring both melting and freezing. The
ice was frozen to a similar thickness hence the semi-infinite assumption remains valid for
the radial experiments. Once the ice was placed into the rig it was placed into the freezer
and allowed to cool to prevent the micrometer melting the ice upon measurement. Before
and after the experiment, the micrometer was used to measure at 10 mm intervals across a
diameter of the ice disk and the difference taken to be the change in ice thickness. The design
of the rig and the ice freezing onto it did not permit measurements across multiple diameters,
however, with a design that permitted movement of the micrometer this could be achieved.
The temperature drop of water through the pipe in the chest freezer was measured as before
and found to be the same as that in the walk-in freezer. Therefore, the measured water
reservoir temperature was set again to be 1.0°C warmer than the desired exit temperature
from the pipe onto the ice.
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8 Results and Discussion - Radial Flow

8.1 Experiments with 1.0°C Water

Two experiments were carried out with 1°C water flowing over the ice disk for five minutes.
At 10 mm intervals from the centre of the ice disk the change in ice thickness was measured
and the data plotted against the radial models as shown in Figure 50. The data from
Experiment 2 (shown in purple), shows the predicted trend and fits well to the shape of the
models for radii greater than ∼ 10 mm. There is one anomalous data point at r = −0.06 m,
which may be due to an air pocket being trapped there, hence some small melting may have
opened up a hole. The data is not perfectly symmetric, which may be due to the ice surface
not being perfectly level and smooth so that the water did not run completely evenly over
its surface. This was observed during experiments.

The results of Experiment 1 do not fit to the models or the data obtained in the second
experiment. This is thought to be a result of the freezer lid being open during this experiment
so that the experiment could be observed and recorded. The air temperature in the freezer,
though less than ambient may have been warmer than in other experiments. Convection
to the air from the water whilst it is flowing over the ice surface is known to be negligible.
However, the cooling in the pipe may have been reduced leading to a higher than expected
water temperature flowing over the ice surface. This would fit with the observed data of
significantly more melting across the whole disk. The experiment shows the importance of
maintaining the same conditions between experiments and the difficulty in obtaining the
desired water temperature without direct measurement.

Figure 50: Radial Results for 1.0°C Inlet Water
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Neither model captured the observed radial profile in the experiments where the water
was injected. Directly underneath the water pipe injecting the water, a circular region of
melting was observed with a very steep gradient, outside of this region the ice profile varied
as expected. The accuracy and frequency (along the radius) of measurements did not capture
the shape of this profile, hence an approximate diagram is shown in Figure 51. The diameter
of the hole was the same order of magnitude as the diameter of the supply pipe (9 mm)
and approximately 10 − 15 mm deep after five minutes. The models assume that water is
injected with a point source at the origin and hence are not representative of the true flow
very close to the centre of the ice disk. The water was also impacting on the ice which may
have affected the ice profile in the local vicinity. A photo showing the melting seen in the
centre of the ice disk is shown in Figure 52.

Figure 51: Observed Radial Profile Figure 52: Melting at the Centre

8.2 Additional Observations - Radial Case

When freezing the initial ice disk a frequent issue was the development of pockets of air
underneath the surface of the ice; melting through these to create a solid disk of ice hindered
the experiments. These pockets are thought to have formed in the radial case rather than
the channel case due to the increased surface area of the ice and smaller area (of walls) for
nucleation. Examples of these are shown in Figures 53, 54 and 55.

Figure 53: Air Pockets Figure 54: Exposed Pocket(s) Figure 55: Air Pocket
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9 Conclusions

Channel Flow

The initial aim of the project was assess and improve upon the models developed by Cartlidge,
2022 for the development of an ice profile down a channel with water flowing over its sur-
face. A new model was devised considering a thermal boundary layer developing in a shear
velocity flow (rather than a uniform one). The experimental setup used previously was sup-
plemented with a Raspberry Pi and thermocouples used to measure the temperature of the
water flowing over the ice more accurately. Though this temperature could not be measured
directly it was determined through the measurement of the water reservoir temperature.

The results for 0.5°C water flowing down the channel were reliable, showing that the inlet
temperature did require careful measurement. The new model with a thermal boundary layer
growing in a viscous shear flow accurately predicted the freezing observed after 5 cm down
the entire length of the channel with the minimum root mean square error of any of the
models. The boundary layer models break down at x = 0 and predict infinite melting there
for t > 0; this is not observed. However, there is significant melting very close to the inlet
which reduces very rapidly with distance so the models closely fit to the shape of the observed
profile there. The 0.8°C experiment showed very similar behaviour to the 0.5°C case with
slightly more melting and slightly less freezing observed. The new thermal boundary layer
model again most accurately predicted the ice profile after eight minutes as expected.

The experiments for 2.0°C water were not accurately predicted by the models though
the two set of results were reliable. The increased melting of ice further along the channel
invalidating the assumptions of the models may explain this. The models all assume that
the water flows over the ice as a thin film. With the melting and small inclination angle of
the channel the water pools close to the channel inlet and so breaks this assumption. The
melting also invalidates the approximation of small changes to the ice-water interface height.

Radial Flow

Developing the models and experiments to a radial flow provides a better representation of
the ice volcano than the channel case. Neglecting any velocity boundary layer in the water,
the mass flow rate per unit area decreases with 1/r. For water with no thermal boundary
layer the flow temperature (and therefore convective heat transfer) decreases exponentially as
exp (−r2), significantly faster than for the channel case, hence more freezing is predicted for
longer. Assuming a thermal boundary layer growing with

√
r the heat transfer is identical to

the case of the channel with severe melting where the water is injected. The models predict
the shape of the data for the region where there is freezing but, as with the channel flow, fail
to capture the behaviour of the melting. The discrepancy in the melting region is increased
by the approximation of a infinitesimally small source which is not used for experiments.
Maintaining constant conditions between experiments was more challenging in the smaller,
chest freezer as a result of its smaller volume and hence thermal mass. The second of the
two experiments for the radial flow align closely to the predictions, especially in the region
of interest where there is freezing. These experiments show that significant further work is
required to understand whether ice volcanoes are a feasible way of refreezing the Arctic.
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10 Further Research

Behaviour of Salt Water

Saltwater has different properties to the fresh water analysed and used in experiments in this
project. For sea water to freeze in the Arctic the top 100-150 metres must cool to -1.8°C.
The ice that then forms will not be pure but contains brine (National Snow and Ice Data
Center, n.d.). The brine in Arctic ice slowly moves back into the sea by various mechanisms,
hence multi-year ice is much stronger and more resistant to melting. The behaviour and
implications of this brine when saltwater freezes on the top surface of the ice rather than
underneath it must be investigated to determine whether there are any undesirable effects.
Modelling the ice profile when using saltwater will be more challenging as the salinity of the
ice that forms will not be trivial to determine analytically. The destination of the salt may
need to be determined primarily experimental results if it cannot be derived mathematically.

Melting at the Channel Inlet

For ice volcanoes to be successful they need to produce a net increase in the amount (and
ideally thickness) of ice. If there is melting where the water is pumped onto the ice then
the ice volcano will melt a hole around itself making it useless. The solution to this could
be to pump water intermittently, allowing the hole to fill with water that then freezes into
a small bump (due to the reduced density of ice) before resuming pumping. The technique
may be infeasible as ice volcano may freeze up without a constant flow of water. Also, the
overall flow rate must be high enough to produce the required freezing for the ice to survive
the summer, intermittent pumping will reduce this.

Cooling the Water to Phase Change Temperature by Convection

Cooling the water to the phase change temperature would prevent it from melting the ice
(even if it does not freeze), thereby increasing the effectiveness of the ice volcano. One way
this could be prevented is by spraying the water such that it cools to freezing temperature
by convection to the air and then freezes by other means. The energy released to cool water
per degree Celsius is around 1% of the latent heat of freezing so the cooling provided by the
air would be minimal but enough to prevent melting.

Energy of the Latent Heat of Freezing

The above suggestion raises the question of where the latent heat of freezing ends up and
the implications that may have. It is envisioned that for the ice volcanoes the heat would
primarily be radiated into space with minimal/no effect on the Earth’s climate. However,
due to the temperature difference of the water and air some heat would be transferred to
the air via convection. This will be greater than if the ice surface were exposed as the
temperature difference is greater. The increased enthalpy of the air may rise through the
atmosphere and then be radiated into space in the ideal case. The destination of the energy
released must be investigated to ensure that it does not cause negatively impact the climate.
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Impact on Local Communities and Wildlife

The impact on wildlife of using ice volcanoes must be considered: thousands or potentially
millions of pumps would be required across the Arctic to counter the severe melting that is
currently ongoing. The flow of water over the Arctic surface may hinder polar bears and
other animals who live there whilst fish and other marine life rely on the underside of the
Arctic ice for a food source and to escape predators (Organisation of the Alfred Wegener
Institute, 2021). These will need to be considered when it is decided if to implement ice
volcanoes and where. The locations where they could be used will be a balance between
where they are most effective at thickening the ice and increasing albedo with where they
cause minimal disruption to wildlife. Local communities who live and depend upon the
Arctic ice will also need to be consulted on whether they believe ice volcanoes are suitable.

New Ice Behaviour in the Summer

The new ice formed from ice volcanoes will likely be saltier than the ice that would have
formed on the underneath of the ice and may also be warmer. First-year ice is saltier than
multi-year ice as there has not been time for the brine to work its way out so the difference
may be small, however the implications of the ice forming on the surface require attention.
The increased saltiness of the new ice will perhaps weaken the ice and make it more likely
to break apart/melt, although this is likely to be offset by the increased thickness. The
newly formed ice is, however, very unlikely to be identical to naturally formed first-year ice.
Hence, there is a need for research into the drawbacks, if there are any, during the summer
of generating ice using ice volcanoes.

Arctic Ice Management (Desch et al., 2017)

The work of Desch et al., 2017 suggested that ice volcanoes could be used to thicken ice over
the Arctic winter with relative ease (from a heat balance perspective). However, modelling
and experiments on the early behaviour of ice volcanoes shows that there is a risk they will
render themselves useless by melting the ice around themselves. The balance of heat transfer
in the initial stages of the ice volcano may cause them to result in net melting rather than
the desired net freezing and so the problem is not as simple as it first appeared. As discussed
above, the heat released from freezing may have unknown impacts which were not considered
before. Whilst it may appear ice volcanoes can thicken Arctic ice, it is not guaranteed. This
report shows that more research is needed to understand the feasibility of ice volcanoes and
that a large-scale heat balance is insufficient to predict the behaviour of ice volcanoes.
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Retrospective Risk Assessment

The risk assessment submitted at the beginning of the project for working in the walk-in
freezer identified the hazards and how these could be avoided. The main risk was hypother-
mia from being stuck in the freezer at -18°C; this was mitigated by leaving the freezer at
regular intervals and being checked on by the kitchen staff at 15 minute intervals whilst
working in the kitchens. Throughout the experiments in the kitchens no incidents occurred
as a result of the precautions taken.

A second risk assessment was submitted when experiments moved to the chest freezer
in the Seawater Lab at the Department of Engineering, University of Cambridge. As the
experiments were being conducted from outside the freezer the risk of hypothermia was
reduced and the overall was risk lower. There were no incidents while working in the lab.

The risk assessment successfully identified the hazards present when conducting the ex-
periments and the mitigations put in place were suitable to manage these.
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